The algebra of the spheres

John Lind

Mathematics & Statistics Dept. Colloquium California State University, Chico September 14, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The *n*-sphere is the topological space

$$S^n = \{(x_0, \ldots, x_n) \in \mathbf{R}^{n+1} : \sum_i x_i^2 = 1\}.$$

For example, S^1 is the unit circle inside of $\mathbb{R}^2 \cong \mathbb{C}$. A map $\gamma \colon S^1 \longrightarrow S^1$ with $\gamma(1) = 1$ determines a loop in S^1 .

Define
$$\Omega S^1 = Map(S^1, S^1)$$

= the space of loops in S^1 .

Identify loops if they are homotopic:

$$egin{aligned} &\gamma \simeq \eta &\iff & \exists H\colon S^1 imes [0,1] \longrightarrow S^1 \ & H(x,0) = \gamma(x) \ & H(x,1) = \eta(x) \end{aligned}$$

Define $\pi_1 S^1 = \Omega S^1 / \simeq$

= the set of homotopy classes of loops in S^1 .

The composition of paths makes $\pi_1 S^1$ into a group.

Theorem (ancient wisdom of human consciousness...)

 $\pi_1 S^1 \cong \mathbb{Z}$

Proof.

Covering space theory! Every loop $\gamma \colon S^1 \longrightarrow S^1$ lifts uniquely to a path $\overline{\gamma} \colon [0, 1] \longrightarrow \mathbb{R}$

ション ふゆ く 山 マ チャット しょうくしゃ

and then $[\gamma] \longmapsto \overline{\gamma}(1) \in \mathbb{Z}$ is the isomorphism intuited by our ancestors.

Define $\Omega^n S^k = Map(S^n, S^k)$ = the space of maps $S^n \longrightarrow S^k$.

Given $\gamma, \eta \in \Omega^n S^k$, define $\gamma + \eta$ by

$$S^n \xrightarrow{\text{pinch}} S^n \vee S^n \xrightarrow{\gamma \vee \eta} S^k.$$

Mild annoyance: + depends on where we pinch S^n .

ΩⁿS^k isn't quite a group, only a homotopical group.
 Solution: identify maps if they are homotopic.

Define $\pi_n S^k = \Omega^n S^k / \simeq$ = the set of homotopy classes of maps $S^n \longrightarrow S^k$.

Then $\pi_n S^k$ is a group. \odot In fact, an abelian group when n > 1. $\odot \odot \odot$ What is $\pi_2 S^2$? Given $\gamma \colon S^2 \longrightarrow S^2$, define

$$\mathsf{degree}(\gamma) = |\gamma^{-1}\{x\}|_\mathsf{mult}$$
 $x \in S^2$ a generic value.

Then $[\gamma] \mapsto \text{degree}(\gamma)$ defines an isomorphism $\pi_2 S^2 \cong \mathbb{Z}$, and similarly $\pi_n S^n \cong \mathbb{Z}$.

What about $\pi_1 S^2$? After perturbation, a loop $\gamma \colon S^1 \longrightarrow S^2$ misses the north pole $\infty \in S^2 \cong \mathbb{C} \cup \{\infty\}$. Then the contraction

$$egin{aligned} & H\colon S^2\setminus\{\infty\} imes[0,1]\longrightarrow S^2\setminus\{\infty\}\ & H(z,t)=(1-t)z \end{aligned}$$

provides a nullhomotopy $\gamma \simeq 0$. Therefore, $\pi_1 S^2 = 0$. In fact, $\pi_n S^k = 0$ whenever n < k. Let's record our progress:

	S^1	S^2	S^3	S^4	S^5	S^6	S^7	<i>S</i> ⁸	S^9	S^{10}	S^{11}
π_1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
π_2		\mathbb{Z}	0	0	0	0	0	0	0	0	0
π_3			\mathbb{Z}	0	0	0	0	0	0	0	0
π_4				\mathbb{Z}	0	0	0	0	0	0	0
π_5					\mathbb{Z}	0	0	0	0	0	0
π_6						\mathbb{Z}	0	0	0	0	0
π_7							\mathbb{Z}	0	0	0	0
π_8								\mathbb{Z}	0	0	0
π_9									\mathbb{Z}	0	0
π_{10}										\mathbb{Z}	0
π_{11}											\mathbb{Z}

Let's record our progress:

	S^1	S^2	S^3	S^4	S^5	S^6	S^7	<i>S</i> ⁸	S^9	S^{10}	S^{11}
π_1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
π_2	0	\mathbb{Z}	0	0	0	0	0	0	0	0	0
π_3	0		\mathbb{Z}	0	0	0	0	0	0	0	0
π_4	0			\mathbb{Z}	0	0	0	0	0	0	0
π_5	0				\mathbb{Z}	0	0	0	0	0	0
π_6	0					\mathbb{Z}	0	0	0	0	0
π_7	0						\mathbb{Z}	0	0	0	0
π_8	0							\mathbb{Z}	0	0	0
π_9	0								\mathbb{Z}	0	0
π_{10}	0									\mathbb{Z}	0
π_{11}	0										\mathbb{Z}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

In fact, $\pi_n S^1 = 0$ for n > 1. The next case to consider is $\pi_3 S^2$. The Hopf fibration $\eta \colon S^3 \longrightarrow S^2$ is defined by the composite

$$S^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2 \xrightarrow{\text{quotient}} \mathbb{C} \cup \{\infty\} \cong S^2$$

 $(z, w) \longmapsto z/w$

In fact, $\pi_3 S^2 = \mathbb{Z}\{\eta\}$.

A similar technique using quaternions and octonions defines

$$\nu \colon S^7 \longrightarrow S^4$$
 and $\sigma \colon S^{15} \longrightarrow S^8$

and it turns out that

 $\pi_7 S^4 = \mathbb{Z}\{
u\} \oplus \mathbb{Z}/12$ and $\pi_{15} S^8 \cong \mathbb{Z}\{\sigma\} \oplus \mathbb{Z}/120.$ [Hopf, 1935]

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7	8	9	10	11
n+k=1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0	0	0	0	0
4	0			\mathbb{Z}	0	0	0	0	0	0	0
5	0				\mathbb{Z}	0	0	0	0	0	0
6	0					\mathbb{Z}	0	0	0	0	0
7	0			$\mathbb{Z}\oplus\mathbb{Z}/12$			\mathbb{Z}	0	0	0	0
8	0							\mathbb{Z}	0	0	0
9	0								\mathbb{Z}	0	0
10	0									\mathbb{Z}	0
11	0										\mathbb{Z}

Maybe the diagonal pattern continues: $\pi_4 S^3 = \mathbb{Z}$?

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7	
n+k=1	\mathbb{Z}	0	0	0	0	0	0	
2	0	\mathbb{Z}	0	0	0	0	0	
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0	
4	0		$\mathbb{Z}/2$	\mathbb{Z}	0	0	0	
5	0	$\mathbb{Z}/2$		$\mathbb{Z}/2$	\mathbb{Z}	0	0	
6	0		$\mathbb{Z}/12$		$\mathbb{Z}/2$	\mathbb{Z}	0	
7	0			$\mathbb{Z}\oplus\mathbb{Z}/12$		$\mathbb{Z}/2$	\mathbb{Z}	
8	0				$\mathbb{Z}/24$		$\mathbb{Z}/2$	
9	0					$\mathbb{Z}/24$		2
10	0						$\mathbb{Z}/24$	
11	0							Z

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7	
n+k=1	\mathbb{Z}	0	0	0	0	0	0	
2	0	\mathbb{Z}	0	0	0	0	0	
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0	
4	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0	0	
5	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0	
6	0		$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	
7	0			$\mathbb{Z}\oplus\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	
8	0				$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	
9	0					$\mathbb{Z}/24$	$\mathbb{Z}/2$	2
10	0						$\mathbb{Z}/24$	2
11	0							Z

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7
n+k=1	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z}/12$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0
7	0		$\mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}
8	0			$(\mathbb{Z}/2)^2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$
9	0				$\mathbb{Z}/2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$
10	0					0	$\mathbb{Z}/24$
11	0						0

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7
n+k=1	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z}/12$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0
7	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}
8	0		$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$
9	0			$(\mathbb{Z}/2)^{2}$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$
10	0				$\mathbb{Z}/2$	0	$\mathbb{Z}/24$
11	0					\mathbb{Z}	0

$\pi_{n+k}S^k$	k = 1	2	3	4	5	6	7
n+k=1	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z}/12$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}	0
7	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	\mathbb{Z}
8	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$
9	0	$\mathbb{Z}/3$	$\mathbb{Z}/3$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$
10	0	$\mathbb{Z}/15$	$\mathbb{Z}/15$	$\mathbb{Z}/3 \oplus \mathbb{Z}/24$	$\mathbb{Z}/2$	0	$\mathbb{Z}/24$
11	0	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	\mathbb{Z}	0

 $\pi_{n+k}S^k$ stabilizes for k > n+1. [Freudenthal, 1937] Denote the common value by $\lim_{k\to\infty} \pi_{n+k}S^k = \pi_nS$.

 $\pi_0 S = \mathbb{Z}, \ \pi_1 S = \mathbb{Z}/2, \ \pi_2 S = \mathbb{Z}/2, \ \pi_3 S = \mathbb{Z}/24, \ \pi_4 S = \mathbf{0} \dots$

The groups $\pi_n S$ are called the stable homotopy groups of spheres:

$$\begin{aligned} \pi_0 S &= \mathbb{Z}, \ \pi_1 S = \mathbb{Z}/2, \ \pi_2 S = \mathbb{Z}/2, \ \pi_3 S = \mathbb{Z}/24, \ \pi_4 S = 0, \\ \pi_5 S &= 0, \ \pi_6 S = \mathbb{Z}/2, \ \pi_7 S = \mathbb{Z}/240, \ \pi_8 S = (\mathbb{Z}/2)^2, \ \pi_9 S = (\mathbb{Z}/2)^3 \\ \pi_{10} &= \mathbb{Z}/6, \ \pi_{11} S = \mathbb{Z}/504, \ \pi_{12} S = 0, \ \pi_{13} S = \mathbb{Z}/3, \ldots \end{aligned}$$

- $\pi_n S$ is a finite abelian group for n > 0 [Serre, 1950].
- There is a multiplication

$$\pi_m S^j imes \pi_n S^k \longrightarrow \pi_{m+n} S^{j+k}$$

making π_*S into a graded ring.

- In positive degrees, the ring π_∗S is nilpotent (x^k = 0 for k ≫ 0) [Nishida, 1973].
- ▶ We can think of the projection $\pi_*S \longrightarrow \pi_0S = \mathbb{Z}$ as a fattening of the integers by nilpotent elements.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

 $\operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathbf{F}_2,\mathbf{F}_2) \Longrightarrow \pi_{t-s}S_{(2)}$

 $\operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathbf{F}_2,\mathbf{F}_2) \Longrightarrow \pi_{t-s}S_{(2)}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

 $\operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathsf{F}_{2},\mathsf{F}_{2}) \Longrightarrow \pi_{t-s}S_{(2)}$

The pattern along the top diagonal of the Adams spectral sequence detects an infinite family of elements in the stable homotopy groups called the image of J:

Theorem (Adams, Quillen, Sullivan 1965–1971)

- $\pi_{8k+1}S$ and $\pi_{8k+2}S$ contain a summand isomorphic to $\mathbb{Z}/2$.
- $\pi_{4k}S$ contains a summand isomorphic to \mathbb{Z}/d , where

 $d = denominator of B_{2k}/4k$.

Here, the Bernoulli numbers B_n are defined by

$$\frac{x}{e^{x}-1} = \sum_{n=0}^{\infty} \frac{B_n x^n}{n!}$$

and are related to zeta values:

$$\zeta(1-2k) = (-1)^k \frac{B_{2k}}{2k}$$

$$\Omega^n S^n = \mathsf{Map}(S^n, S^n)$$

= the space of maps $S^n \longrightarrow S^n$.

The algebraic stabilization $\pi_n S = \lim_{k \to \infty} \pi_{n+k} S^k$ has a topological avatar:

$$\Omega^{\infty}S^{\infty}:=\bigcup_{k\geq 0}\Omega^{k}S^{k}.$$

The + and \cdot on π_*S come from topological operations making $\Omega^{\infty}S^{\infty}$ into a homotopical ring.

Since
$$\pi_n \Omega^k S^k = \operatorname{Map}(S^{n+k}, S^k) / \simeq$$
,
 $\pi_n \Omega^\infty S^\infty = \lim_{k \to \infty} \pi_n \Omega^k S^k = \lim_{k \to \infty} \pi_{n+k} S^k = \pi_n S.$

This suggests that the "universal sphere" is $S = \Omega^{\infty} S^{\infty}$.

For each group G, there is a unique (up to \simeq) space BG satisfying

$$\pi_n BG = \begin{cases} G & \text{if } n = 1, \\ 0 & \text{if } n \neq 1. \end{cases}$$

Let $\Sigma_k = Aut\{1, ..., k\}$. Then disjoint union and cartesian product of sets define maps

$$+: B\Sigma_j \times B\Sigma_k \longrightarrow B\Sigma_{j+k}$$
$$\cdot: B\Sigma_j \times B\Sigma_k \longrightarrow B\Sigma_{jk}$$

and so:

$$\prod_{k\geq 0} B\Sigma_k \text{ is a homotopical rig } (rig = ring without negatives)$$

In fact, it is the free homotopical rig on the category of finite sets!

ション ふゆ アメリア メリア しょうくしゃ

The homomorphism $\mathbb{N} \longrightarrow \mathbb{Z}$ is a group completion:

 ${\mathbb Z}$ is obtained from ${\mathbb N}$ by formally adding negatives.

Instead of working only with the cardinality of finite sets, we can take their automorphisms into account and consider Σ_k .

Theorem (Barratt-Priddy-Quillen 1972)

There is a group completion of homotopical rings

$$\coprod_{k\geq 0} B\Sigma_k \longrightarrow \Omega^\infty S^\infty.$$

Equivalently, there is an isomorphism of integral homology groups

$$H_*(\mathbb{Z} \times B\Sigma_\infty) \cong H_*(\Omega^\infty S^\infty).$$

Group completion is black magic on homotopy groups:

$$\pi_n(B\Sigma_k) = 0$$
 for $n > 1$, but $\pi_n \Omega^{\infty} S^{\infty} = \pi_n S!$

In stable homotopy theory, the group completion $S = \Omega^\infty S^\infty$ is the universal base ring. Just as

 \mathbb{Z} -algebras = rings,

S-algebras = homotopical rings = setting for derived algebra. Examples of S-algebras:

- \mathbb{Z} -algebras, by restriction along $S \longrightarrow \mathbb{Z}$.
- ▶ given a space X, the S-algebra S[ΩX] is a refinement of the group ring Z[π₁X]
- ▶ BO, BU = the classifying spaces for vector bundles over \mathbb{R}, \mathbb{C}
- differential graded algebras, in particular those encoding intersections in algebraic geometry.

I study the algebraic properties of S-algebras. An S-algebra R has

- ▶ a space of units R[×],
- ▶ a topological version of Hochschild homology $THH_*(R)$,
- a notion of algebraic K-theory $K_*(R)$.

These are new invariants, and their study is connected to lots of interesting algebraic geometry, number theory, and differential topology.

ション ふゆ く 山 マ チャット しょうくしゃ