The algebra of the spheres

John Lind

Mathematics \& Statistics Dept. Colloquium
California State University, Chico
September 14, 2018

The n-sphere is the topological space

$$
S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbf{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}
$$

For example, S^{1} is the unit circle inside of $\mathrm{R}^{2} \cong \mathrm{C}$. A map $\gamma: S^{1} \longrightarrow S^{1}$ with $\gamma(1)=1$ determines a loop in S^{1}.

Define $\Omega S^{1}=\operatorname{Map}\left(S^{1}, S^{1}\right)$
$=$ the space of loops in S^{1}.
Identify loops if they are homotopic:

$$
\begin{array}{r}
\gamma \simeq \eta \quad \exists \quad \exists H: S^{1} \times[0,1] \longrightarrow S^{1} \\
H(x, 0)=\gamma(x) \\
H(x, 1)=\eta(x)
\end{array}
$$

Define $\pi_{1} S^{1}=\Omega S^{1} / \simeq$
$=$ the set of homotopy classes of loops in S^{1}.
The composition of paths makes $\pi_{1} S^{1}$ into a group.

Theorem (ancient wisdom of human consciousness...)
$\pi_{1} S^{1} \cong \mathbb{Z}$

Proof.

Covering space theory! Every loop $\gamma: S^{1} \longrightarrow S^{1}$ lifts uniquely to a path $\bar{\gamma}:[0,1] \longrightarrow \mathbb{R}$

$$
\begin{aligned}
& {[0,1]-\stackrel{\bar{\gamma}}{\exp }>{ }_{\downarrow} \underset{\sim}{\mathbb{R}}} \\
& S^{1} \xrightarrow{\gamma} S^{1}
\end{aligned}
$$

and then $[\gamma] \longmapsto \bar{\gamma}(1) \in \mathbb{Z}$ is the isomorphism intuited by our ancestors.

Define $\Omega^{n} S^{k}=\operatorname{Map}\left(S^{n}, S^{k}\right)$
$=$ the space of maps $S^{n} \longrightarrow S^{k}$.
Given $\gamma, \eta \in \Omega^{n} S^{k}$, define $\gamma+\eta$ by

$$
S^{n} \xrightarrow{\text { pinch }} S^{n} \vee S^{n} \xrightarrow{\gamma \vee \eta} S^{k} .
$$

Mild annoyance: + depends on where we pinch S^{n}.

- $\Omega^{n} S^{k}$ isn't quite a group, only a homotopical group.

Solution: identify maps if they are homotopic.
Define $\pi_{n} S^{k}=\Omega^{n} S^{k} / \simeq$
$=$ the set of homotopy classes of maps $S^{n} \longrightarrow S^{k}$.
Then $\pi_{n} S^{k}$ is a group. ©
In fact, an abelian group when $n>1 .()() \cdot($

What is $\pi_{2} S^{2}$? Given $\gamma: S^{2} \longrightarrow S^{2}$, define

$$
\text { degree }(\gamma)=\left|\gamma^{-1}\{x\}\right|_{\text {mult }} \quad x \in S^{2} \text { a generic value. }
$$

Then $[\gamma] \longmapsto \operatorname{degree}(\gamma)$ defines an isomorphism $\pi_{2} S^{2} \cong \mathbb{Z}$, and similarly $\pi_{n} S^{n} \cong \mathbb{Z}$.

What about $\pi_{1} S^{2}$? After perturbation, a loop $\gamma: S^{1} \longrightarrow S^{2}$ misses the north pole $\infty \in S^{2} \cong \mathbb{C} \cup\{\infty\}$. Then the contraction

$$
\begin{gathered}
H: S^{2} \backslash\{\infty\} \times[0,1] \longrightarrow S^{2} \backslash\{\infty\} \\
H(z, t)=(1-t) z
\end{gathered}
$$

provides a nullhomotopy $\gamma \simeq 0$. Therefore, $\pi_{1} S^{2}=0$.
In fact, $\pi_{n} S^{k}=0$ whenever $n<k$.

Let's record our progress:

	S^{1}	S^{2}	S^{3}	S^{4}	S^{5}	S^{6}	S^{7}	S^{8}	S^{9}	S^{10}	S^{11}
π_{1}	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
π_{2}		\mathbb{Z}	0	0	0	0	0	0	0	0	0
π_{3}			\mathbb{Z}	0	0	0	0	0	0	0	0
π_{4}				\mathbb{Z}	0	0	0	0	0	0	0
π_{5}					\mathbb{Z}	0	0	0	0	0	0
π_{6}						\mathbb{Z}	0	0	0	0	0
π_{7}							\mathbb{Z}	0	0	0	0
π_{8}								\mathbb{Z}	0	0	0
π_{9}									\mathbb{Z}	0	0
π_{10}										\mathbb{Z}	0
π_{11}											\mathbb{Z}

Let's record our progress:

	S^{1}	S^{2}	S^{3}	S^{4}	S^{5}	S^{6}	S^{7}	S^{8}	S^{9}	S^{10}	S^{11}
π_{1}	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
π_{2}	0	\mathbb{Z}	0	0	0	0	0	0	0	0	0
π_{3}	0		\mathbb{Z}	0	0	0	0	0	0	0	0
π_{4}	0			\mathbb{Z}	0	0	0	0	0	0	0
π_{5}	0				\mathbb{Z}	0	0	0	0	0	0
π_{6}	0					\mathbb{Z}	0	0	0	0	0
π_{7}	0						\mathbb{Z}	0	0	0	0
π_{8}	0							\mathbb{Z}	0	0	0
π_{9}	0								\mathbb{Z}	0	0
π_{10}	0									\mathbb{Z}	0
π_{11}	0										\mathbb{Z}

In fact, $\pi_{n} S^{1}=0$ for $n>1$.
The next case to consider is $\pi_{3} S^{2}$.

The Hopf fibration $\eta: S^{3} \longrightarrow S^{2}$ is defined by the composite

$$
\begin{aligned}
S^{3} \subset \mathbb{R}^{4} \cong \mathbb{C}^{2} \xrightarrow{\text { quotient }} \mathbb{C} \cup\{\infty\} \cong S^{2} \\
(z, w) \longmapsto z / w
\end{aligned}
$$

In fact, $\pi_{3} S^{2}=\mathbb{Z}\{\eta\}$.
A similar technique using quaternions and octonions defines

$$
\nu: S^{7} \longrightarrow S^{4} \quad \text { and } \quad \sigma: S^{15} \longrightarrow S^{8}
$$

and it turns out that

$$
\pi_{7} S^{4}=\mathbb{Z}\{\nu\} \oplus \mathbb{Z} / 12 \quad \text { and } \quad \pi_{15} S^{8} \cong \mathbb{Z}\{\sigma\} \oplus \mathbb{Z} / 120
$$

[Hopf, 1935]

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7	8	9	10	11
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0	0	0	0	0
4	0			\mathbb{Z}	0	0	0	0	0	0	0
5	0				\mathbb{Z}	0	0	0	0	0	0
6	0				\mathbb{Z}	0	0	0	0	0	
7	0			$\mathbb{Z} \oplus \mathbb{Z} / 12$			\mathbb{Z}	0	0	0	0
8	0							\mathbb{Z}	0	0	0
9	0								\mathbb{Z}	0	0
10	0									\mathbb{Z}	0
11	0									\mathbb{Z}	

Maybe the diagonal pattern continues: $\pi_{4} S^{3}=\mathbb{Z}$?

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0		$\mathbb{Z} / 2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z} / 2$		$\mathbb{Z} / 2$	\mathbb{Z}	0	0
6	0		$\mathbb{Z} / 12$		$\mathbb{Z} / 2$	\mathbb{Z}	0
7	0			$\mathbb{Z} \oplus \mathbb{Z} / 12$		$\mathbb{Z} / 2$	\mathbb{Z}
8	0				$\mathbb{Z} / 24$		$\mathbb{Z} / 2$
9	0					$\mathbb{Z} / 24$	
10	0						$\mathbb{Z} / 24$
11	0						

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0
6	0		$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0
7	0			$\mathbb{Z} \oplus \mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}
8	0				$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
9	0					$\mathbb{Z} / 24$	$\mathbb{Z} / 2$
10	0						$\mathbb{Z} / 24$
11	0						

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z} / 12$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0
7	0		$\mathbb{Z} / 2$	$\mathbb{Z} \oplus \mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}
8	0			$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
9	0				$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$
10	0					0	$\mathbb{Z} / 24$
11	0						0

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z} / 12$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0
7	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} \oplus \mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}
8	0		$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
9	0			$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$
10	0				$\mathbb{Z} / 2$	0	$\mathbb{Z} / 24$
11	0					\mathbb{Z}	0

$\pi_{n+k} S^{k}$	$k=1$	2	3	4	5	6	7
$n+k=1$	\mathbb{Z}	0	0	0	0	0	0
2	0	\mathbb{Z}	0	0	0	0	0
3	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0
4	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0	0
5	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0	0
6	0	$\mathbb{Z} / 12$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}	0
7	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} \oplus \mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\mathbb{Z}
8	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
9	0	$\mathbb{Z} / 3$	$\mathbb{Z} / 3$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$
10	0	$\mathbb{Z} / 15$	$\mathbb{Z} / 15$	$\mathbb{Z} / 3 \oplus \mathbb{Z} / 24$	$\mathbb{Z} / 2$	0	$\mathbb{Z} / 24$
11	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	\mathbb{Z}	0

$\pi_{n+k} S^{k}$ stabilizes for $k>n+1$. [Freudenthal, 1937]
Denote the common value by $\lim _{k \rightarrow \infty} \pi_{n+k} S^{k}=\pi_{n} S$.

$$
\pi_{0} S=\mathbb{Z}, \quad \pi_{1} S=\mathbb{Z} / 2, \quad \pi_{2} S=\mathbb{Z} / 2, \quad \pi_{3} S=\mathbb{Z} / 24, \quad \pi_{4} S=0 \ldots
$$

The groups $\pi_{n} S$ are called the stable homotopy groups of spheres:

$$
\begin{gathered}
\pi_{0} S=\mathbb{Z}, \quad \pi_{1} S=\mathbb{Z} / 2, \quad \pi_{2} S=\mathbb{Z} / 2, \quad \pi_{3} S=\mathbb{Z} / 24, \quad \pi_{4} S=0, \\
\pi_{5} S=0, \quad \pi_{6} S=\mathbb{Z} / 2, \quad \pi_{7} S=\mathbb{Z} / 240, \quad \pi_{8} S=(\mathbb{Z} / 2)^{2}, \quad \pi_{9} S=(\mathbb{Z} / 2)^{3} \\
\pi_{10}=\mathbb{Z} / 6, \quad \pi_{11} S=\mathbb{Z} / 504, \quad \pi_{12} S=0, \quad \pi_{13} S=\mathbb{Z} / 3, \ldots
\end{gathered}
$$

- $\pi_{n} S$ is a finite abelian group for $n>0$ [Serre, 1950].
- There is a multiplication

$$
\pi_{m} S^{j} \times \pi_{n} S^{k} \longrightarrow \pi_{m+n} S^{j+k}
$$

making $\pi_{*} S$ into a graded ring.

- In positive degrees, the ring $\pi_{*} S$ is nilpotent ($x^{k}=0$ for $k \gg 0$) [Nishida, 1973].
- We can think of the projection $\pi_{*} S \longrightarrow \pi_{0} S=\mathbb{Z}$ as a fattening of the integers by nilpotent elements.

The Adams Spectral Sequence for $p=2$

The Adams Spectral Sequence for $p=2$

The Adams Spectral Sequence for $p=2$

$\mathrm{Ext}_{\mathcal{A}}^{s, t}\left(\mathrm{~F}_{2}, \mathrm{~F}_{2}\right) \Longrightarrow \pi_{t-s} S_{(2)}$

The Adams Spectral Sequence for $p=2$

$\mathrm{Ext}_{\mathcal{A}}^{s, t}\left(\mathrm{~F}_{2}, \mathrm{~F}_{2}\right) \Longrightarrow \pi_{t-s} S_{(2)}$

The pattern along the top diagonal of the Adams spectral sequence detects an infinite family of elements in the stable homotopy groups called the image of J :

Theorem (Adams, Quillen, Sullivan 1965-1971)

- $\pi_{8 k+1} S$ and $\pi_{8 k+2} S$ contain a summand isomorphic to $\mathbb{Z} / 2$.
- $\pi_{4 k} S$ contains a summand isomorphic to \mathbb{Z} / d, where

$$
d=\text { denominator of } B_{2 k} / 4 k
$$

Here, the Bernoulli numbers B_{n} are defined by

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!}
$$

and are related to zeta values:

$$
\zeta(1-2 k)=(-1)^{k} \frac{B_{2 k}}{2 k} .
$$

$$
\begin{aligned}
\Omega^{n} S^{n} & =\operatorname{Map}\left(S^{n}, S^{n}\right) \\
& =\text { the space of maps } S^{n} \longrightarrow S^{n} .
\end{aligned}
$$

The algebraic stabilization $\pi_{n} S=\lim _{k \rightarrow \infty} \pi_{n+k} S^{k}$ has a topological avatar:

$$
\Omega^{\infty} S^{\infty}:=\bigcup_{k \geq 0} \Omega^{k} S^{k}
$$

The + and \cdot on $\pi_{*} S$ come from topological operations making $\Omega^{\infty} S^{\infty}$ into a homotopical ring.

Since $\pi_{n} \Omega^{k} S^{k}=\operatorname{Map}\left(S^{n+k}, S^{k}\right) / \simeq$,

$$
\pi_{n} \Omega^{\infty} S^{\infty}=\lim _{k \rightarrow \infty} \pi_{n} \Omega^{k} S^{k}=\lim _{k \rightarrow \infty} \pi_{n+k} S^{k}=\pi_{n} S
$$

This suggests that the "universal sphere" is $S=\Omega^{\infty} S^{\infty}$.

For each group G, there is a unique (up to \simeq) space $B G$ satisfying

$$
\pi_{n} B G= \begin{cases}G & \text { if } n=1 \\ 0 & \text { if } n \neq 1\end{cases}
$$

Let $\Sigma_{k}=$ Aut $\{1, \ldots, k\}$. Then disjoint union and cartesian product of sets define maps

$$
\begin{aligned}
& +: B \Sigma_{j} \times B \Sigma_{k} \longrightarrow B \Sigma_{j+k} \\
& \quad \therefore B \Sigma_{j} \times B \Sigma_{k} \longrightarrow B \Sigma_{j k}
\end{aligned}
$$

and so:
$\coprod_{k \geq 0} B \Sigma_{k}$ is a homotopical rig (rig $=$ ring without negatives $)$
In fact, it is the free homotopical rig on the category of finite sets!

The homomorphism $\mathbb{N} \longrightarrow \mathbb{Z}$ is a group completion:
\mathbb{Z} is obtained from \mathbb{N} by formally adding negatives. Instead of working only with the cardinality of finite sets, we can take their automorphisms into account and consider Σ_{k}.

Theorem (Barratt-Priddy-Quillen 1972)

There is a group completion of homotopical rings

$$
\coprod_{k \geq 0} B \Sigma_{k} \longrightarrow \Omega^{\infty} S^{\infty}
$$

Equivalently, there is an isomorphism of integral homology groups

$$
H_{*}\left(\mathbb{Z} \times B \Sigma_{\infty}\right) \cong H_{*}\left(\Omega^{\infty} S^{\infty}\right)
$$

Group completion is black magic on homotopy groups:

$$
\pi_{n}\left(B \Sigma_{k}\right)=0 \text { for } n>1, \text { but } \pi_{n} \Omega^{\infty} S^{\infty}=\pi_{n} S!
$$

Brave New Algebra

In stable homotopy theory, the group completion $S=\Omega^{\infty} S^{\infty}$ is the universal base ring. Just as
\mathbb{Z}-algebras $=$ rings,
S-algebras $=$ homotopical rings $=$ setting for derived algebra.
Examples of S-algebras:

- \mathbb{Z}-algebras, by restriction along $S \longrightarrow \mathbb{Z}$.
- given a space X, the S-algebra $S[\Omega X]$ is a refinement of the group ring $\mathbb{Z}\left[\pi_{1} X\right]$
- $B O, B U=$ the classifying spaces for vector bundles over \mathbb{R}, \mathbb{C}
- differential graded algebras, in particular those encoding intersections in algebraic geometry.

Brave New Algebra

I study the algebraic properties of S-algebras. An S-algebra R has

- a space of units R^{\times},
- a topological version of Hochschild homology $\mathrm{THH}_{*}(R)$,
- a notion of algebraic K-theory $K_{*}(R)$.

These are new invariants, and their study is connected to lots of interesting algebraic geometry, number theory, and differential topology.

