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The n-sphere is the topological space

Sn = f(x0; : : : ; xn) 2 Rn+1 :
P

i x
2
i = 1g:

For example, S1 is the unit circle inside of R2 �= C.
A map  : S1 �! S1 with (1) = 1 determines a loop in S1.

Define ΩS1 = Map(S1;S1)

= the space of loops in S1.

Identify loops if they are homotopic:

 ' � () 9H : S1 � [0; 1] �! S1

H(x ; 0) = (x)

H(x ; 1) = �(x)

Define �1S
1 = ΩS1= '

= the set of homotopy classes of loops in S1.

The composition of paths makes �1S
1 into a group.



Theorem (ancient wisdom of human consciousness...)

�1S
1 �= Z

Proof.
Covering space theory! Every loop  : S1 �! S1 lifts uniquely to a
path  : [0; 1] �! R

[0; 1]

exp
��

 // R
exp
��

S1  // S1

and then [] 7�! (1) 2 Z is the isomorphism intuited by our
ancestors.



Define ΩnSk = Map(Sn; Sk)

= the space of maps Sn �! Sk .

Given ; � 2 ΩnSk , define  + � by

Sn pinch
���! Sn _ Sn _�

��! Sk :

Mild annoyance: + depends on where we pinch Sn.

I ΩnSk isn’t quite a group, only a homotopical group.

Solution: identify maps if they are homotopic.

Define �nS
k = ΩnSk= '

= the set of homotopy classes of maps Sn �! Sk .

Then �nS
k is a group. ,

In fact, an abelian group when n > 1. ,,,



What is �2S
2? Given  : S2 �! S2, define

degree() = j�1fxgjmult x 2 S2 a generic value.

Then [] 7�! degree() defines an isomorphism �2S
2 �= Z, and

similarly �nS
n �= Z.

What about �1S
2? After perturbation, a loop  : S1 �! S2 misses

the north pole 1 2 S2 �= C [ f1g. Then the contraction

H : S2 n f1g � [0; 1] �! S2 n f1g

H(z ; t) = (1� t)z

provides a nullhomotopy  ' 0. Therefore, �1S
2 = 0.

In fact, �nS
k = 0 whenever n < k .



Let’s record our progress:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

�1 Z 0 0 0 0 0 0 0 0 0 0
�2 Z 0 0 0 0 0 0 0 0 0
�3 Z 0 0 0 0 0 0 0 0
�4 Z 0 0 0 0 0 0 0
�5 Z 0 0 0 0 0 0
�6 Z 0 0 0 0 0
�7 Z 0 0 0 0
�8 Z 0 0 0
�9 Z 0 0
�10 Z 0
�11 Z



Let’s record our progress:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

�1 Z 0 0 0 0 0 0 0 0 0 0
�2 0 Z 0 0 0 0 0 0 0 0 0
�3 0 Z 0 0 0 0 0 0 0 0
�4 0 Z 0 0 0 0 0 0 0
�5 0 Z 0 0 0 0 0 0
�6 0 Z 0 0 0 0 0
�7 0 Z 0 0 0 0
�8 0 Z 0 0 0
�9 0 Z 0 0
�10 0 Z 0
�11 0 Z

In fact, �nS
1 = 0 for n > 1.

The next case to consider is �3S
2.



The Hopf fibration � : S3 �! S2 is defined by the composite

S3 � R4 �= C2 quotient
�����! C [ f1g �= S2

(z ;w) 7�! z=w

In fact, �3S
2 = Zf�g.

A similar technique using quaternions and octonions defines

� : S7 �! S4 and � : S15 �! S8

and it turns out that

�7S
4 = Zf�g � Z=12 and �15S

8 �= Zf�g � Z=120:

[Hopf, 1935]



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z 0 0 0 0 0 0 0 0
5 0 Z 0 0 0 0 0 0 0
6 0 Z 0 0 0 0 0 0
7 0 Z� Z=12 Z 0 0 0 0 0
8 0 Z 0 0 0 0
9 0 Z 0 0 0

10 0 Z 0 0
11 0 Z 0

Maybe the diagonal pattern continues: �4S
3 = Z?



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z=2 Z 0 0 0 0 0 0 0 0
5 0 Z=2 Z=2 Z 0 0 0 0 0 0 0
6 0 Z=12 Z=2 Z 0 0 0 0 0 0
7 0 Z� Z=12 Z=2 Z 0 0 0 0 0
8 0 Z=24 Z=2 Z 0 0 0 0
9 0 Z=24 Z=2 Z 0 0 0

10 0 Z=24 Z=2 Z 0 0
11 0 Z=24 Z=2 Z 0



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z=2 Z=2 Z 0 0 0 0 0 0 0 0
5 0 Z=2 Z=2 Z=2 Z 0 0 0 0 0 0 0
6 0 Z=12 Z=2 Z=2 Z 0 0 0 0 0 0
7 0 Z� Z=12 Z=2 Z=2 Z 0 0 0 0 0
8 0 Z=24 Z=2 Z=2 Z 0 0 0 0
9 0 Z=24 Z=2 Z=2 Z 0 0 0

10 0 Z=24 Z=2 Z=2 Z 0 0
11 0 Z=24 Z=2 Z=2 Z 0



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z=2 Z=2 Z 0 0 0 0 0 0 0 0
5 0 Z=2 Z=2 Z=2 Z 0 0 0 0 0 0 0
6 0 Z=12 Z=12 Z=2 Z=2 Z 0 0 0 0 0 0
7 0 Z=2 Z� Z=12 Z=2 Z=2 Z 0 0 0 0 0
8 0 (Z=2)2 Z=24 Z=2 Z=2 Z 0 0 0 0
9 0 Z=2 Z=24 Z=2 Z=2 Z 0 0 0

10 0 0 Z=24 Z=2 Z=2 Z 0 0
11 0 0 Z=24 Z=2 Z=2 Z 0



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z=2 Z=2 Z 0 0 0 0 0 0 0 0
5 0 Z=2 Z=2 Z=2 Z 0 0 0 0 0 0 0
6 0 Z=12 Z=12 Z=2 Z=2 Z 0 0 0 0 0 0
7 0 Z=2 Z=2 Z� Z=12 Z=2 Z=2 Z 0 0 0 0 0
8 0 Z=2 (Z=2)2 Z=24 Z=2 Z=2 Z 0 0 0 0
9 0 (Z=2)2 Z=2 Z=24 Z=2 Z=2 Z 0 0 0

10 0 Z=2 0 Z=24 Z=2 Z=2 Z 0 0
11 0 Z 0 Z=24 Z=2 Z=2 Z 0



�n+kS
k k = 1 2 3 4 5 6 7 8 9 10 11 12

n + k = 1 Z 0 0 0 0 0 0 0 0 0 0 0
2 0 Z 0 0 0 0 0 0 0 0 0 0
3 0 Z Z 0 0 0 0 0 0 0 0 0
4 0 Z=2 Z=2 Z 0 0 0 0 0 0 0 0
5 0 Z=2 Z=2 Z=2 Z 0 0 0 0 0 0 0
6 0 Z=12 Z=12 Z=2 Z=2 Z 0 0 0 0 0 0
7 0 Z=2 Z=2 Z� Z=12 Z=2 Z=2 Z 0 0 0 0 0
8 0 Z=2 Z=2 (Z=2)2 Z=24 Z=2 Z=2 Z 0 0 0 0
9 0 Z=3 Z=3 (Z=2)2 Z=2 Z=24 Z=2 Z=2 Z 0 0 0

10 0 Z=15 Z=15 Z=3� Z=24 Z=2 0 Z=24 Z=2 Z=2 Z 0 0
11 0 Z=2 Z=2 Z=15 Z=2 Z 0 Z=24 Z=2 Z=2 Z 0

�n+kS
k stabilizes for k > n + 1. [Freudenthal, 1937]

Denote the common value by lim
k!1

�n+kS
k = �nS .

�0S = Z; �1S = Z=2; �2S = Z=2; �3S = Z=24; �4S = 0 : : :



The groups �nS are called the stable homotopy groups of spheres:

�0S = Z; �1S = Z=2; �2S = Z=2; �3S = Z=24; �4S = 0;

�5S = 0; �6S = Z=2; �7S = Z=240; �8S = (Z=2)2; �9S = (Z=2)3

�10 = Z=6; �11S = Z=504; �12S = 0; �13S = Z=3; : : :

I �nS is a finite abelian group for n > 0 [Serre, 1950].
I There is a multiplication

�mS
j � �nS

k �! �m+nS
j+k

making ��S into a graded ring.
I In positive degrees, the ring ��S is nilpotent (xk = 0 for

k � 0) [Nishida, 1973].
I We can think of the projection ��S �! �0S = Z as a

fattening of the integers by nilpotent elements.



The Adams Spectral Sequence for p = 2

Exts;tA (F2;F2) =) �t�sS(2)
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The Adams Spectral Sequence for p = 2

Exts;tA (F2;F2) =) �t�sS(2)



The pattern along the top diagonal of the Adams spectral sequence
detects an infinite family of elements in the stable homotopy groups
called the image of J:

Theorem (Adams, Quillen, Sullivan 1965–1971)

I �8k+1S and �8k+2S contain a summand isomorphic to Z=2.
I �4kS contains a summand isomorphic to Z=d , where

d = denominator of B2k=4k:

Here, the Bernoulli numbers Bn are defined by

x

ex � 1
=

1X
n=0

Bnx
n

n!

and are related to zeta values:

�(1� 2k) = (�1)k
B2k

2k
:



ΩnSn = Map(Sn;Sn)

= the space of maps Sn �! Sn.

The algebraic stabilization �nS = lim
k!1

�n+kS
k has a topological

avatar:
Ω1S1 :=

[
k�0

ΩkSk :

The + and � on ��S come from topological operations making
Ω1S1 into a homotopical ring.

Since �nΩkSk = Map(Sn+k ; Sk)= ',

�nΩ1S1 = lim
k!1

�nΩkSk = lim
k!1

�n+kS
k = �nS :

This suggests that the “universal sphere” is S = Ω1S1.



For each group G , there is a unique (up to ') space BG satisfying

�nBG =

(
G if n = 1,
0 if n 6= 1.

Let Σk = Autf1; : : : ; kg. Then disjoint union and cartesian product
of sets define maps

+: BΣj � BΣk �! BΣj+k

� : BΣj � BΣk �! BΣjk

and so:a
k�0

BΣk is a homotopical rig (rig = ring without negatives)

In fact, it is the free homotopical rig on the category of finite sets!



The homomorphism N �! Z is a group completion:
Z is obtained from N by formally adding negatives.

Instead of working only with the cardinality of finite sets, we can
take their automorphisms into account and consider Σk .

Theorem (Barratt-Priddy-Quillen 1972)

There is a group completion of homotopical ringsa
k�0

BΣk �! Ω1S1:

Equivalently, there is an isomorphism of integral homology groups

H�(Z� BΣ1) �= H�(Ω1S1):

Group completion is black magic on homotopy groups:

�n(BΣk) = 0 for n > 1, but �nΩ1S1 = �nS!



Brave New Algebra

In stable homotopy theory, the group completion S = Ω1S1 is the
universal base ring. Just as

Z-algebras = rings,
S-algebras = homotopical rings = setting for derived algebra.

Examples of S-algebras:
I Z-algebras, by restriction along S �! Z.
I given a space X , the S-algebra S [ΩX ] is a refinement of the

group ring Z[�1X ]

I BO;BU = the classifying spaces for vector bundles over R;C
I differential graded algebras, in particular those encoding

intersections in algebraic geometry.



Brave New Algebra

I study the algebraic properties of S-algebras. An S-algebra R has
I a space of units R�,
I a topological version of Hochschild homology THH�(R),
I a notion of algebraic K -theory K�(R).

These are new invariants, and their study is connected to lots of
interesting algebraic geometry, number theory, and differential
topology.
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